Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Luiz Everson da Silva, ${ }^{\text {a }}$
Carla Regina Andrighetti-
Fröhner, ${ }^{\text {a }}$ Ricardo José Nunes, ${ }^{\text {a }}$ Cláudia Maria Oliveira Simões ${ }^{\text {b }}$ and Sabine Foro ${ }^{\mathrm{c} *}$

${ }^{\text {a }}$ Departamento de Química-UFSC, 88040-900 Florianópolis, SC, Brazil, ' ${ }^{\mathbf{b}}$ Departamento de Ciências Farmacêuticas-UFSC, 88040-900 Florianópolis, SC, Brazil, and ${ }^{\text {C }}$ Clemens SchöpfInstitut für Organische Chemie und Biochemie, Technische, Universität Darmstadt, Petersenstrasse 22, D-64287 Darmstadt, Germany

Correspondence e-mail: foro@tu-darmstadt.de

Key indicators

Single-crystal X-ray study
$T=299 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.045$
$w R$ factor $=0.128$
Data-to-parameter ratio $=12.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(1,3-Benzodioxol-5-ylmethyl)ammonium 2-methoxy-5-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]bezenesulfonate monohydrate

The reaction of a chalcone derivative and an arylmethylamine yields the title organic salt, $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{NO}_{2}^{+} \cdot \mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{5} \mathrm{~S}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$. The 1,3-dioxolane ring exhibits an envelope conformation. The $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ torsion angle of 16.7 (7) ${ }^{\circ}$ between the 2 -methoxy-5-vinylbenzenesulfonate unit and the phenyl ring indicates the non-planarity of the system. The polar heads of the anion and cation are connected by two bifurcated N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The water molecule completes hydrophilic interactions by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with the cation and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds with the anion along the a axis.

Comment

Chalcones, 1,3-diaryl-2-propen-1-ones, are natural and synthetic compounds belonging to the flavonoid family. Chalcones possess a broad spectrum of biological activities, including antibacterial, antihelmintic, amoebicidal, anti-ulcer, antiviral, insecticidal, antiprotzoal, anticancer, cytotoxic and immunosuppressive activities (Dimmock et al., 1999). We have investigated a series of novel synthetic chalcone derivatives for their trypanocidal and leishmanicidal properties (Lunardi et al., 2003). Much to our surprise, the reaction of the chalcone derivatives 2-methoxy-5-[(E)-3-oxo-3-phenylprop-1-enyl]bezenesulfonic acid with the arylmethylamine (benzo $[d][1,3]$ -dioxol-6-yl)methanamine leads to the formation of the title compound, (I), which has been characterized by X-ray structure analysis; the results are shown here (Fig. 1).

(I)

The 1,3-dioxolane ring exibits an envelope conformation with C 24 in the flap position. The $\mathrm{N} 1-\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19$ torsion angle between the NH_{3} group and the benzene ring is $91.6(4)^{\circ}$. The 2-methoxy-5-vinylbenzenesulfonate unit is nearly planar with a deviation from the mean plane of 0.098 (3) \AA for C 7 and -0.186 (4) \AA for C8. The C7-C8-

Received 4 May 2006
Accepted 2 June 2006

Figure 1
The molecular structure of (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
The molecular packing of (I), with hydrogen bonds shown as dashed lines; cation and anion polar heads form a hydrophilic channel running along a. H atoms not involved in the interactions shown have been omitted.
$\mathrm{C} 9-\mathrm{C} 10$ torsion angle of 16.7 (7) ${ }^{\circ}$ between this group and the phenyl ring indicate the non-planarity of the system.

The crystal packing is dominated by hydrogen bonds between the polar cation and anion heads and water molecules that connect them into a hydrophilic chain along the a axis (Table 1 and Fig. 2). The compound is achiral, but to optimize crystal packing and requirements of polar interactions the non-centrosymmetric space group $\mathrm{Pca2}_{1}$ seems to be more appropriate.

Experimental

4-Methoxychalcone ($6.63 \mathrm{~g}, 27.87 \mathrm{mmol}$) was reacted with chlorosulfonic acid ($19.48 \mathrm{~g}, 167.2 \mathrm{mmol}$) at room temperature for five days. The red solution was poured on to crushed ice with stirring to give the sulfonic acid derivative as a yellow solid. The sulfonic acid derivative $(0.50 \mathrm{~g}, 1.48 \mathrm{mmol})$ was treated with piperonylamine $(0.33 \mathrm{~g}$, 2.19 mmol) in methanol at 273 K . The mixture was reacted at room temperature for 1 h . The precipitate was collected by filtration and washed with ice-methanol. Recrystallization from hot ethanol yielded 0.338 g (47%) of (I). Single crystals suitable for X-ray diffraction study were obtained by recrystallization from a hot ethanol-water (95:5) solution of (I).

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{NO}_{2}{ }^{+} \cdot \mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{5} \mathrm{~S}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=487.51$
Orthorhombic, $\mathrm{Pca2}_{1}$
$a=11.631$ (1) £
$b=24.686$ (1) \AA
$c=8.198$ (1) \AA
$V=2353.8(4) \AA^{3}$
$Z=4$
$D_{x}=1.376 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
$\mu=1.66 \mathrm{~mm}^{-1}$
$T=299$ (2) K
Prism, colourless
$0.60 \times 0.15 \times 0.10 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.688, T_{\text {max }}=0.854$
4302 measured reflections

> 3968 independent reflections 3553 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.045$
> $\theta_{\max }=66.7^{\circ}$
> 3 standard reflections \quad frequency: 120 min intensity decay: 0.5%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.128$
$S=1.04$
3968 reflections
324 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0917 P)^{2}\right. \\
& +0.2858 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.014 \\
& \Delta \rho_{\text {max }}=0.31 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-0.34 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0046 \text { (4) } \\
& \text { Absolute structure: Flack (1983), } \\
& 1725 \text { Friedel pairs } \\
& \text { Flack parameter: }-0.01 \text { (2) }
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H11N \cdots O3	$0.84(2)$	$2.18(2)$	$2.947(4)$	$153(4)$
N1-H11N \cdots O1	$0.84(2)$	$2.48(3)$	$3.166(4)$	$140(3)$
N1-H12N \cdots O8	$0.88(2)$	$1.88(2)$	$2.723(4)$	$160(4)$
N1-H13N \cdots O3 $^{\text {i }}$	$0.84(2)$	$2.25(2)$	$3.021(4)$	$153(3)$
N1-H13N \cdots O $^{\text {i }}$	$0.84(2)$	$2.34(3)$	$3.055(4)$	$144(3)$
O8-H81O \cdots O $^{\text {ii }}$	$0.84(2)$	$2.17(3)$	$2.968(4)$	$159(4)$
O8-H82O $\cdots 1^{\text {iii }}$	$0.85(2)$	$2.07(3)$	$2.837(4)$	$151(5)$

Symmetry codes: (i) $-x+\frac{1}{2}, y, z-\frac{1}{2}$; (ii) $x-\frac{1}{2},-y+1, z$; (iii) $-x+\frac{1}{2}, y, z+\frac{1}{2}$.

The OH and NH H atoms were located in a difference map and refined with restrained geometry: $\mathrm{N}-\mathrm{H}$ distances were restrained to 0.86 (2) $\AA, \mathrm{O}-\mathrm{H}$ distances to 0.85 (2) \AA; the $\mathrm{H}-\mathrm{H}$ distance was restrained to 1.365 (2) \AA, thus leading to an $\mathrm{H}-\mathrm{O}-\mathrm{H}$ angle of 107° (Nardelli, 1999). The CH atoms were positioned with idealized geometry and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93 \AA$
(aromatic), $0.96 \AA$ (methyl) and $0.97 \AA$ (methylene). All H atoms were refined with isotropic displacement parameters (set to 1.2 or 1.5 times $U_{\text {eq }}$ of the parent atom).

Data collection: CAD-4-PC (Enraf-Nonius, 1993); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe \& Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors thank Professor Dr Hartmut Fuess, Technische Universität Darmstadt, for diffractometer time.

References

Dimmock, J. R., Elias, D. W., Beazely, M. A. \& Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.
Enraf-Nonius (1993). CAD-4-PC. Version 1.2. Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Lunardi, F., Guzela, M., Rodriguez, A. T., Corrêa, R., Eger-Mangrich, I., Steindel, M., Grisard, E. C., Assreuy, J., Calixto, J. B. \& Santos, A. (2003). Antimicrob. Agents Chemother. 47, 1449-1451.
Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (1987). REDU4. Version 6.2c. Stoe \& Cie GmbH, Darmstadt, Germany.

[^0]: © 2006 International Union of Crystallography All rights reserved

